Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS One ; 18(2): e0281365, 2023.
Article in English | MEDLINE | ID: covidwho-2244661

ABSTRACT

BACKGROUND: As diagnostic tests for COVID-19 were broadly deployed under Emergency Use Authorization, there emerged a need to understand the real-world utilization and performance of serological testing across the United States. METHODS: Six health systems contributed electronic health records and/or claims data, jointly developed a master protocol, and used it to execute the analysis in parallel. We used descriptive statistics to examine demographic, clinical, and geographic characteristics of serology testing among patients with RNA positive for SARS-CoV-2. RESULTS: Across datasets, we observed 930,669 individuals with positive RNA for SARS-CoV-2. Of these, 35,806 (4%) were serotested within 90 days; 15% of which occurred <14 days from the RNA positive test. The proportion of people with a history of cardiovascular disease, obesity, chronic lung, or kidney disease; or presenting with shortness of breath or pneumonia appeared higher among those serotested compared to those who were not. Even in a population of people with active infection, race/ethnicity data were largely missing (>30%) in some datasets-limiting our ability to examine differences in serological testing by race. In datasets where race/ethnicity information was available, we observed a greater distribution of White individuals among those serotested; however, the time between RNA and serology tests appeared shorter in Black compared to White individuals. Test manufacturer data was available in half of the datasets contributing to the analysis. CONCLUSION: Our results inform the underlying context of serotesting during the first year of the COVID-19 pandemic and differences observed between claims and EHR data sources-a critical first step to understanding the real-world accuracy of serological tests. Incomplete reporting of race/ethnicity data and a limited ability to link test manufacturer data, lab results, and clinical data challenge the ability to assess the real-world performance of SARS-CoV-2 tests in different contexts and the overall U.S. response to current and future disease pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , United States/epidemiology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , RNA , Pandemics , COVID-19 Testing
2.
PLoS One ; 18(2): e0279956, 2023.
Article in English | MEDLINE | ID: covidwho-2234943

ABSTRACT

BACKGROUND: Real-world performance of COVID-19 diagnostic tests under Emergency Use Authorization (EUA) must be assessed. We describe overall trends in the performance of serology tests in the context of real-world implementation. METHODS: Six health systems estimated the odds of seropositivity and positive percent agreement (PPA) of serology test among people with confirmed SARS-CoV-2 infection by molecular test. In each dataset, we present the odds ratio and PPA, overall and by key clinical, demographic, and practice parameters. RESULTS: A total of 15,615 people were observed to have at least one serology test 14-90 days after a positive molecular test for SARS-CoV-2. We observed higher PPA in Hispanic (PPA range: 79-96%) compared to non-Hispanic (60-89%) patients; in those presenting with at least one COVID-19 related symptom (69-93%) as compared to no such symptoms (63-91%); and in inpatient (70-97%) and emergency department (93-99%) compared to outpatient (63-92%) settings across datasets. PPA was highest in those with diabetes (75-94%) and kidney disease (83-95%); and lowest in those with auto-immune conditions or who are immunocompromised (56-93%). The odds ratios (OR) for seropositivity were higher in Hispanics compared to non-Hispanics (OR range: 2.59-3.86), patients with diabetes (1.49-1.56), and obesity (1.63-2.23); and lower in those with immunocompromised or autoimmune conditions (0.25-0.70), as compared to those without those comorbidities. In a subset of three datasets with robust information on serology test name, seven tests were used, two of which were used in multiple settings and met the EUA requirement of PPA ≥87%. Tests performed similarly across datasets. CONCLUSION: Although the EUA requirement was not consistently met, more investigation is needed to understand how serology and molecular tests are used, including indication and protocol fidelity. Improved data interoperability of test and clinical/demographic data are needed to enable rapid assessment of the real-world performance of in vitro diagnostic tests.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , United States/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Clinical Laboratory Techniques/methods , Serologic Tests
3.
Pediatr Infect Dis J ; 41(12): e513-e516, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2190914

ABSTRACT

Although post-acute sequelae of COVID-19 among adult survivors has gained significant attention, data in children hospitalized for severe acute respiratory syndrome coronavirus 2 is limited. This study of commercially insured US children shows that those hospitalized with COVID-19 or multisystem inflammatory syndrome in children have a substantial burden of severe acute respiratory syndrome coronavirus 2 sequelae and associated health care visits postdischarge.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Adult , Humans , Aftercare , Follow-Up Studies , Patient Discharge , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/therapy , Disease Progression , Delivery of Health Care
4.
NPJ Digit Med ; 5(1): 76, 2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1890278

ABSTRACT

Integrating real-world data (RWD) from several clinical sites offers great opportunities to improve estimation with a more general population compared to analyses based on a single clinical site. However, sharing patient-level data across sites is practically challenging due to concerns about maintaining patient privacy. We develop a distributed algorithm to integrate heterogeneous RWD from multiple clinical sites without sharing patient-level data. The proposed distributed conditional logistic regression (dCLR) algorithm can effectively account for between-site heterogeneity and requires only one round of communication. Our simulation study and data application with the data of 14,215 COVID-19 patients from 230 clinical sites in the UnitedHealth Group Clinical Research Database demonstrate that the proposed distributed algorithm provides an estimator that is robust to heterogeneity in event rates when efficiently integrating data from multiple clinical sites. Our algorithm is therefore a practical alternative to both meta-analysis and existing distributed algorithms for modeling heterogeneous multi-site binary outcomes.

5.
Nat Commun ; 13(1): 2377, 2022 05 02.
Article in English | MEDLINE | ID: covidwho-1890173

ABSTRACT

Real-world analysis of the incidence of SARS-CoV-2 infection post vaccination is important in determining the comparative effectiveness of the available vaccines. In this retrospective cohort study using deidentified administrative claims for Medicare Advantage and commercially insured individuals in a research database we examine over 3.5 million fully vaccinated individuals, including 8,848 individuals with SARS-CoV-2 infection, with a follow-up period between 14 and 151 days after their second dose. Our primary outcome was the rate of Covid-19 infection occurring at 30, 60, and 90 days at least 14 days after the second dose of either the mRNA-1273 vaccine or the BNT162b2 vaccine. Sub-analyses included the incidence of hospitalization, ICU admission, and death/hospice transfer. Separate analysis was conducted for individuals above and below age 65 and those without a prior diagnosis of Covid-19. We show that immunization with mRNA-1273, compared to BNT162b2, provides slightly more protection against SARS-CoV-2 infection that reaches statistical significance at 90 days with a number needed to vaccinate of >290. There are no differences in vaccine effectiveness for protection against hospitalization, ICU admission, or death/hospice transfer (aOR 1.23, 95% CI (0.67, 2.25)).


Subject(s)
COVID-19 , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Medicare , Retrospective Studies , SARS-CoV-2/genetics , United States/epidemiology
6.
J Biomed Inform ; 131: 104097, 2022 07.
Article in English | MEDLINE | ID: covidwho-1867315

ABSTRACT

BACKGROUND: Observational studies incorporating real-world data from multiple institutions facilitate study of rare outcomes or exposures and improve generalizability of results. Due to privacy concerns surrounding patient-level data sharing across institutions, methods for performing regression analyses distributively are desirable. Meta-analysis of institution-specific estimates is commonly used, but has been shown to produce biased estimates in certain settings. While distributed regression methods are increasingly available, methods for analyzing count outcomes are currently limited. Count data in practice are commonly subject to overdispersion, exhibiting greater variability than expected under a given statistical model. OBJECTIVE: We propose a novel computational method, a one-shot distributed algorithm for quasi-Poisson regression (ODAP), to distributively model count outcomes while accounting for overdispersion. METHODS: ODAP incorporates a surrogate likelihood approach to perform distributed quasi-Poisson regression without requiring patient-level data sharing, only requiring sharing of aggregate data from each participating institution. ODAP requires at most three rounds of non-iterative communication among institutions to generate coefficient estimates and corresponding standard errors. In simulations, we evaluate ODAP under several data scenarios possible in multi-site analyses, comparing ODAP and meta-analysis estimates in terms of error relative to pooled regression estimates, considered the gold standard. In a proof-of-concept real-world data analysis, we similarly compare ODAP and meta-analysis in terms of relative error to pooled estimatation using data from the OneFlorida Clinical Research Consortium, modeling length of stay in COVID-19 patients as a function of various patient characteristics. In a second proof-of-concept analysis, using the same outcome and covariates, we incorporate data from the UnitedHealth Group Clinical Discovery Database together with the OneFlorida data in a distributed analysis to compare estimates produced by ODAP and meta-analysis. RESULTS: In simulations, ODAP exhibited negligible error relative to pooled regression estimates across all settings explored. Meta-analysis estimates, while largely unbiased, were increasingly variable as heterogeneity in the outcome increased across institutions. When baseline expected count was 0.2, relative error for meta-analysis was above 5% in 25% of iterations (250/1000), while the largest relative error for ODAP in any iteration was 3.59%. In our proof-of-concept analysis using only OneFlorida data, ODAP estimates were closer to pooled regression estimates than those produced by meta-analysis for all 15 covariates. In our distributed analysis incorporating data from both OneFlorida and the UnitedHealth Group Clinical Discovery Database, ODAP and meta-analysis estimates were largely similar, while some differences in estimates (as large as 13.8%) could be indicative of bias in meta-analytic estimates. CONCLUSIONS: ODAP performs privacy-preserving, communication-efficient distributed quasi-Poisson regression to analyze count outcomes using data stored within multiple institutions. Our method produces estimates nearly matching pooled regression estimates and sometimes more accurate than meta-analysis estimates, most notably in settings with relatively low counts and high outcome heterogeneity across institutions.


Subject(s)
COVID-19 , Algorithms , COVID-19/epidemiology , Humans , Likelihood Functions , Models, Statistical , Regression Analysis
7.
Nat Commun ; 13(1): 1678, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1768824

ABSTRACT

Linear mixed models are commonly used in healthcare-based association analyses for analyzing multi-site data with heterogeneous site-specific random effects. Due to regulations for protecting patients' privacy, sensitive individual patient data (IPD) typically cannot be shared across sites. We propose an algorithm for fitting distributed linear mixed models (DLMMs) without sharing IPD across sites. This algorithm achieves results identical to those achieved using pooled IPD from multiple sites (i.e., the same effect size and standard error estimates), hence demonstrating the lossless property. The algorithm requires each site to contribute minimal aggregated data in only one round of communication. We demonstrate the lossless property of the proposed DLMM algorithm by investigating the associations between demographic and clinical characteristics and length of hospital stay in COVID-19 patients using administrative claims from the UnitedHealth Group Clinical Discovery Database. We extend this association study by incorporating 120,609 COVID-19 patients from 11 collaborative data sources worldwide.


Subject(s)
COVID-19 , Algorithms , COVID-19/epidemiology , Confidentiality , Databases, Factual , Humans , Linear Models
9.
Public Health Rep ; 136(6): 663-670, 2021.
Article in English | MEDLINE | ID: covidwho-1390406

ABSTRACT

The COVID-19 pandemic prompted widespread closures of primary and secondary schools. Routine testing of asymptomatic students and staff members, as part of a comprehensive mitigation program, can help schools open safely. "Pooling in a pod" is a public health surveillance strategy whereby testing cohorts (pods) are based on social relationships and physical proximity. Pooled testing provides a single laboratory test result for the entire pod, rather than a separate result for each person in the pod. During the 2020-2021 school year, an independent preschool-grade 12 school in Washington, DC, used pooling in a pod for weekly on-site point-of-care testing of all staff members and students. Staff members and older students self-collected anterior nares samples, and trained staff members collected samples from younger students. Overall, 12 885 samples were tested in 1737 pools for 863 students and 264 staff members from November 30, 2020, through April 30, 2021. The average pool size was 7.4 people. The average time from sample collection to pool test result was 40 minutes. The direct testing cost per person per week was $24.24, including swabs. During the study period, 4 surveillance test pools received positive test results for COVID-19. A post-launch survey found most parents (90.3%), students (93.4%), and staff members (98.8%) were willing to participate in pooled testing with confirmatory tests for pool members who received a positive test result. The proportion of students in remote learning decreased by 62.2% for students in grades 6-12 (P < .001) and by 92.4% for students in preschool to grade 5 after program initiation (P < .001). Pooling in a pod is a feasible, cost-effective surveillance strategy that may facilitate safe, sustainable, in-person schooling during a pandemic.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Schools/organization & administration , Adolescent , Child , Child, Preschool , Female , Humans , Male , Pandemics , Public Health Surveillance/methods , SARS-CoV-2 , Schools/standards , Time Factors , United States/epidemiology
10.
JAMA Netw Open ; 4(6): e2112842, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1274639

ABSTRACT

Importance: Black patients hospitalized with COVID-19 may have worse outcomes than White patients because of excess individual risk or because Black patients are disproportionately cared for in hospitals with worse outcomes for all. Objectives: To examine differences in COVID-19 hospital mortality rates between Black and White patients and to assess whether the mortality rates reflect differences in patient characteristics by race or by the hospitals to which Black and White patients are admitted. Design, Setting, and Participants: This cohort study assessed Medicare beneficiaries admitted with a diagnosis of COVID-19 to 1188 US hospitals from January 1, 2020, through September 21, 2020. Exposure: Hospital admission for a diagnosis of COVID-19. Main Outcomes and Measures: The primary composite outcome was inpatient death or discharge to hospice within 30 days of admission. We estimated the association of patient-level characteristics (including age, sex, zip code-level income, comorbidities, admission from a nursing facility, and days since January 1, 2020) with differences in mortality or discharge to hospice among Black and White patients. To examine the association with the hospital itself, we adjusted for the specific hospitals to which patients were admitted. We used simulation modeling to estimate the mortality among Black patients had they instead been admitted to the hospitals where White patients were admitted. Results: Of the 44 217 Medicare beneficiaries included in the study, 24 281 (55%) were women; mean (SD) age was 76.3 (10.5) years; 33 459 participants (76%) were White, and 10 758 (24%) were Black. Overall, 2634 (8%) White patients and 1100 (10%) Black patients died as inpatients, and 1670 (5%) White patients and 350 (3%) Black patients were discharged to hospice within 30 days of hospitalization, for a total mortality-equivalent rate of 12.86% for White patients and 13.48% for Black patients. Black patients had similar odds of dying or being discharged to hospice (odds ratio [OR], 1.06; 95% CI, 0.99-1.12) in an unadjusted comparison with White patients. After adjustment for clinical and sociodemographic patient characteristics, Black patients were more likely to die or be discharged to hospice (OR, 1.11; 95% CI, 1.03-1.19). This difference became indistinguishable when adjustment was made for the hospitals where care was delivered (odds ratio, 1.02; 95% CI, 0.94-1.10). In simulations, if Black patients in this sample were instead admitted to the same hospitals as White patients in the same distribution, their rate of mortality or discharge to hospice would decline from the observed rate of 13.48% to the simulated rate of 12.23% (95% CI for difference, 1.20%-1.30%). Conclusions and Relevance: This cohort study found that Black patients hospitalized with COVID-19 had higher rates of hospital mortality or discharge to hospice than White patients after adjustment for the personal characteristics of those patients. However, those differences were explained by differences in the hospitals to which Black and White patients were admitted.


Subject(s)
Black or African American/statistics & numerical data , COVID-19/ethnology , COVID-19/mortality , Hospital Mortality/ethnology , White People/statistics & numerical data , Aged , Aged, 80 and over , Cohort Studies , Comorbidity , Female , Health Status Disparities , Healthcare Disparities/statistics & numerical data , Hospice Care/statistics & numerical data , Hospitalization/statistics & numerical data , Hospitals , Humans , Male , Medicare , SARS-CoV-2 , United States/epidemiology
11.
PLoS One ; 16(3): e0248783, 2021.
Article in English | MEDLINE | ID: covidwho-1150546

ABSTRACT

BACKGROUND: COVID-19 test sensitivity and specificity have been widely examined and discussed, yet optimal use of these tests will depend on the goals of testing, the population or setting, and the anticipated underlying disease prevalence. We model various combinations of key variables to identify and compare a range of effective and practical surveillance strategies for schools and businesses. METHODS: We coupled a simulated data set incorporating actual community prevalence and test performance characteristics to a susceptible, infectious, removed (SIR) compartmental model, modeling the impact of base and tunable variables including test sensitivity, testing frequency, results lag, sample pooling, disease prevalence, externally-acquired infections, symptom checking, and test cost on outcomes including case reduction and false positives. FINDINGS: Increasing testing frequency was associated with a non-linear positive effect on cases averted over 100 days. While precise reductions in cumulative number of infections depended on community disease prevalence, testing every 3 days versus every 14 days (even with a lower sensitivity test) reduces the disease burden substantially. Pooling provided cost savings and made a high-frequency approach practical; one high-performing strategy, testing every 3 days, yielded per person per day costs as low as $1.32. INTERPRETATION: A range of practically viable testing strategies emerged for schools and businesses. Key characteristics of these strategies include high frequency testing with a moderate or high sensitivity test and minimal results delay. Sample pooling allowed for operational efficiency and cost savings with minimal loss of model performance.


Subject(s)
COVID-19 Testing/economics , COVID-19/diagnosis , COVID-19/virology , Cost-Benefit Analysis , Delayed Diagnosis , Humans , Mass Screening/economics , Prevalence , RNA, Viral/analysis , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Schools , Sensitivity and Specificity
12.
JAMA Intern Med ; 181(4): 471-478, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-985875

ABSTRACT

Importance: It is unknown how much the mortality of patients with coronavirus disease 2019 (COVID-19) depends on the hospital that cares for them, and whether COVID-19 hospital mortality rates are improving. Objective: To identify variation in COVID-19 mortality rates and how those rates have changed over the first months of the pandemic. Design, Setting, and Participants: This cohort study assessed 38 517 adults who were admitted with COVID-19 to 955 US hospitals from January 1, 2020, to June 30, 2020, and a subset of 27 801 adults (72.2%) who were admitted to 398 of these hospitals that treated at least 10 patients with COVID-19 during 2 periods (January 1 to April 30, 2020, and May 1 to June 30, 2020). Exposures: Hospital characteristics, including size, the number of intensive care unit beds, academic and profit status, hospital setting, and regional characteristics, including COVID-19 case burden. Main Outcomes and Measures: The primary outcome was the hospital's risk-standardized event rate (RSER) of 30-day in-hospital mortality or referral to hospice adjusted for patient-level characteristics, including demographic data, comorbidities, community or nursing facility admission source, and time since January 1, 2020. We examined whether hospital characteristics were associated with RSERs or their change over time. Results: The mean (SD) age among participants (18 888 men [49.0%]) was 70.2 (15.5) years. The mean (SD) hospital-level RSER for the 955 hospitals was 11.8% (2.5%). The mean RSER in the worst-performing quintile of hospitals was 15.65% compared with 9.06% in the best-performing quintile (absolute difference, 6.59 percentage points; 95% CI, 6.38%-6.80%; P < .001). Mean RSERs in all but 1 of the 398 hospitals improved; 376 (94%) improved by at least 25%. The overall mean (SD) RSER declined from 16.6% (4.0%) to 9.3% (2.1%). The absolute difference in rates of mortality or referral to hospice between the worst- and best-performing quintiles of hospitals decreased from 10.54 percentage points (95% CI, 10.03%-11.05%; P < .001) to 5.59 percentage points (95% CI, 5.33%-5.86%; P < .001). Higher county-level COVID-19 case rates were associated with worse RSERs, and case rate declines were associated with improvement in RSERs. Conclusions and Relevance: Over the first months of the pandemic, COVID-19 mortality rates in this cohort of US hospitals declined. Hospitals did better when the prevalence of COVID-19 in their surrounding communities was lower.


Subject(s)
COVID-19/mortality , Hospitalization/statistics & numerical data , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/therapy , Cohort Studies , Critical Care , Female , Hospital Mortality , Humans , Male , Middle Aged , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL